A reprogrammable mechanical metamaterial with stable memory

  • 1

    Shelby, RA, Smith, DR & Schultz, S. Experimental verification of a negative refractive index. Science 292, 77-79 (2001).

    Google Scholar CAS ADS Article

  • two

    Li, J. & Chan, CT Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004).

    Google Scholar ADS Article

  • 3 –

    Clausen, A., Wang, F., Jensen, JS, Sigmund, O. & Lewis, JA Topology of optimized architectures with programmable Poisson’s coefficient over large deformations. Adv. Mater. 27, 5523–5527 (2015).

    Google Scholar CAS Article

  • 4

    Konaković-Luković, M., Panetta, J., Crane, K. & Pauly, M. Rapid implantation of curved surfaces via programmable auxetics. ACM Trans. Graphic. 37, 1-13 (2018).

    Google Scholar article

  • 5

    Coulais, C., Teomy, E., de Reus, K., Shokef, Y. & van Hecke, M. Combinatorial design of Texture Mechanical metamaterials. Nature 535, 529-532 (2016).

    Google Scholar CAS ADS Article

  • 6

    Guseinov, R., McMahan, C., Pérez, J., Daraio, C. & Bickel, B. Programming temporal morphing of self-atuated shells. Common Nat.. 11, 237 (2020).

    Google Scholar CAS ADS Article

  • 7

    Zheng, X. et al. Ultralight and ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    Google Scholar CAS ADS Article

  • 8

    Meza, LR et al. Resilient metamaterials with 3D hierarchical architecture. Proc. Natl Acad. Sci. USA 112, 11502–11507 (2015).

    Google Scholar CAS ADS Article

  • 9

    Shan, S. et al. Multistable engineered materials to capture energy from elastic deformation. Adv. Mater. 27, 4296–4301 (2015).

    Google Scholar CAS Article

  • 10

    Raney, JR et al. Stable propagation of mechanical signals on light media using stored elastic energy. Proc. Natl Acad. Sci. USA 113, 9722–9727 (2016).

    Google Scholar CAS ADS Article

  • 11

    Kim, Y., Yuk, H., Zhao, R., Chester, SA & Zhao, X. Printing of ferromagnetic domains for fast, non-tied soft materials. Nature 558, 274-279 (2018).

    Google Scholar CAS ADS Article

  • 12

    Jin, L., Khajehtourian, R., Mueller, J., Rafsanjani, A. & Tournat, V. Transition waves guided in multistable mechanical metamaterials. Proc. Natl Acad. Sci. USA 117, 2319–2325 (2020).

    MathSciNet CAS Google Scholar ADS Article

  • 13

    Wang, P., Casadei, F., Shan, S., Weaver, JC & Bertoldi, K. Taking advantage of the buckling to design tunable, locally resonant acoustic metamaterials. Phys. Rev. Lett. 113, 014301 (2014).

    Google Scholar ADS Article

  • 14

    Florijn, B., Coulais, C. & Van Hecke, M. Programmable Mechanical metamaterials. Phys. Rev. Lett. 113, 175503 (2014).

    Google Scholar ADS Article

  • 15

    Silverberg, JL et al. Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345, 647-650 (2014).

    Google Scholar CAS ADS Article

  • 16

    Sussman, DM et al. Algorithmic network Kirigami: a route to pluripotent materials. Proc. Natl Acad. Sci. USA 112, 7449–7453 (2015).

    Google Scholar CAS ADS Article

  • 17

    Wang, Y. et al. Architectural networks with adaptive energy absorption. Extrem. Mech. Lett. 33, 100557 (2019).

    Google Scholar article

  • 18

    Medina, E., Farrell, PE, Bertoldi, K. & Rycroft, CH Navigating the landscape of nonlinear mechanical metamaterials for advanced programmability. Phys. Rev. B 101, 064101 (2020).

    Google Scholar CAS ADS Article

  • 19

    Novelino, LS, Ze, Q., Wu, S., Paulino, GH & Zhao, R. Untethered control of Funcami microrobots with Distributed Actuation. Proc. Natl Acad. Sci. USA 117, 24096–24101 (2020).

    Google Scholar CAS ADS Article

  • 20

    Overvelde, JTB, Kloek, T., D’haen, JJA & Bertoldi, K. Amplifying the response of soft actuators, taking advantage of snap-through instabilities. Proc. Natl Acad. Sci. USA 112, 10863–10868 (2015).

    Google Scholar CAS ADS Article

  • 21

    Chen, T., Mueller, J. & Shea, K. Integrated design and simulation of tunable structures of various states manufactured monolithically with 3D printing of various materials. Sci. Representative. 7, 45671 (2017).

    Google Scholar CAS ADS Article

  • 22

    Bilal, OR, Foehr, A. & Daraio, C. Reprogrammable fononic metasurfaces. Adv. Mater. 29, 1700628 (2017).

    Google Scholar article

  • 23

    Faber, JA, Arrieta, AF & Studart, AR Bioinspired spring origami. Science 359, 1386–1391 (2018).

    Google Scholar CAS ADS Article

  • 24

    Le Ferrand, H., Studart, AR & Arrieta, AF filtered sensing using plug-in composites with built-in mechanical-electrical transduction. ACS Nano 13, 4752–4760 (2019).

    Google Scholar article

  • 25

    Yasuda, H., Korpas, L. & Raney, J. Transition waves and domain wall formation in multistable mechanical metamaterials. Phys. Rev. Appl. 13, 054067 (2020).

    Google Scholar CAS ADS Article

  • 26

    Sobota, PM & Seffen, KA Bistable polar-orthotropic shallow shells. R. Soc. Sci open. 6, 190888 (2019).

    Google Scholar CAS ADS Article

  • 27

    Jia, Z. & Wang, L. Triple negative mechanical metamaterial triggered by instability. Phys. Rev. Appl. 12, 024040 (2019).

    Google Scholar CAS ADS Article

  • 28

    Zheludev, NI & Kivshar, YS From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

    Google Scholar CAS ADS Article

  • 29

    Silva, A. et al. Execution of mathematical operations with metamaterials. Science 343, 160-163 (2014).

    MathSciNet CAS Google Scholar ADS Article

  • 30

    Cui, TJ, Qi, MQ, Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014).

    Google Scholar ADS Article

  • 31

    Della Giovampaola, C. & Engheta, N. Digital metamaterials. Nat. Mater. 13, 1115-1121 (2014).

    Google Scholar CAS ADS Article

  • 32

    Oliveri, G. & Overvelde, JTB Inverse design of mechanical metamaterials that undergo buckling. Adv. Funct. Mater. 30, 1909033 (2020).

    Google Scholar CAS Article

  • 33

    Bauhofer, AA et al. Use of photochemical contraction in direct laser writing for the transformation of polymer sheets. Adv. Mater. 29, 1703024 (2017).

    Google Scholar article

  • 34

    Kotikian, A., Truby, RL, Boley, JW, White, TJ & Lewis, JA 3D printing of elastomeric liquid crystal actuators with spatially programmed nematic order. Adv. Mater. 30, 1706164 (2018).

    Google Scholar article

  • 35

    Skylar-Scott, MA, Mueller, J., Visser, CW & Lewis, JA Voxelated soft matter via multinozzle multimaterial 3D printing. Nature 575, 330–335 (2019).

    Google Scholar CAS ADS Article

  • 36

    Reis, PM, Heinrich, HM & Van Hecke, M. Designer matter: a perspective. Extrem. Mech. Lett. 5, 25-29 (2015)

    Google Scholar article

  • 37

    Ogden, RW Great isotropic elasticity of deformation – in the correlation of theory and experience for incompressible rubber-like solids. Rubber Chem. Technol. 46, 398–416 (1973).

    Google Scholar article

  • 38

    Ogden, RW & Roxburgh, DG A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. UMA 455, 2861–2877 (1999).

    MathSciNet Google Scholar ADS Article

  • 39

    Mises, RV Über die Stabilitätsprobleme der Elastizitätstheorie. Z. Angew. Mathematics. Mech. 3, 406–422 (1923).

    Google Scholar article

  • 40

    Schneider, CA, Rasband, WS & Eliceiri, KW NIH Image for ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Google Scholar CAS Article

  • 41

    Griffiths, DJ Introduction to Electrodynamics 3rd ed. (Prentice-Hall, 1999).

  • 42

    Cedolin, L. et al. Structural Stability: Elastic, Inelastic, Fracture and Damage Theories (World Scientific, 2010).

  • Source